Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Chin Med ; 49(6): 1437-1448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247560

RESUMEN

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Glicina/metabolismo , Manejo del Dolor/métodos , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
2.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918982

RESUMEN

Lithium (Li+) salt is widely used as a therapeutic agent for treating neurological and psychiatric disorders. Despite its therapeutic effects on neurological and psychiatric disorders, it can also disturb the neuroendocrine axis in patients under lithium therapy. The hypothalamic area contains GABAergic and glutamatergic neurons and their receptors, which regulate various hypothalamic functions such as the release of neurohormones, control circadian activities. At the neuronal level, several neurotransmitter systems are modulated by lithium exposure. However, the effect of Li+ on hypothalamic neuron excitability and the precise action mechanism involved in such an effect have not been fully understood yet. Therefore, Li+ action on hypothalamic neurons was investigated using a whole-cell patch-clamp technique. In hypothalamic neurons, Li+ increased the GABAergic synaptic activities via action potential independent presynaptic mechanisms. Next, concentration-dependent replacement of Na+ by Li+ in artificial cerebrospinal fluid increased frequencies of GABAergic miniature inhibitory postsynaptic currents without altering their amplitudes. Li+ perfusion induced inward currents in the majority of hypothalamic neurons independent of amino-acids receptor activation. These results suggests that Li+ treatment can directly affect the hypothalamic region of the brain and regulate the release of various neurohormones involved in synchronizing the neuroendocrine axis.


Asunto(s)
Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Litio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Animales , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Técnicas de Placa-Clamp , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Receptores de Aminoácidos/metabolismo , Transmisión Sináptica/efectos de los fármacos
3.
Korean J Physiol Pharmacol ; 24(5): 433-440, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830150

RESUMEN

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is the first relay site for the orofacial nociceptive inputs via the thin myelinated Aδ and unmyelinated C primary afferent fibers. Borneol, one of the valuable timehonored herbal ingredients in traditional Chinese medicine, is a popular treatment for anxiety, anesthesia, and antinociception. However, to date, little is known as to how borneol acts on the SG neurons of the Vc. To close this gap, the whole-cell patch-clamp technique was applied to elucidate the antinociceptive mechanism responding for the actions of borneol on the SG neurons of the Vc in mice. In the voltage-clamp mode, holding at -60 mV, the borneol-induced non-desensitizing inward currents were not affected by tetrodotoxin, a voltage-gated Na+ channel blocker, 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and DL-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. However, borneol-induced inward currents were partially decreased in the presence of picrotoxin, a γ-aminobutyric acid (GABA)A receptor antagonist, or strychnine, a glycine receptor antagonist, and was almost suppressed in the presence of picrotoxin and strychnine. Though borneol did not show any effect on the glycine-induced inward currents, borneol enhanced GABA-mediated responses. Beside, borneol enhanced the GABA-induced hyperpolarization under the current-clamp mode. Altogether, we suggest that borneol contributes in part toward mediating the inhibitory GABA and glycine transmission on the SG neurons of the Vc and may serve as an herbal therapeutic for orofacial pain ailments.

4.
J Vet Sci ; 19(2): 172-178, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-29169227

RESUMEN

It has been reported that Korean red ginseng (KRG), a valuable and important traditional medicine, has varied effects on the central nervous system, suggesting its activities are complicated. The paraventricular nucleus (PVN) neurons of the hypothalamus has a critical role in stress responses and hormone secretions. Although the action mechanisms of KRG on various cells and systems have been reported, the direct membrane effects of KRG on PVN neurons have not been fully described. In this study, the direct membrane effects of KRG on PVN neuronal activity were investigated by using a perforated patch-clamp in ICR mice. In gramicidin perforated patch-clamp mode, KRG extract (KRGE) induced repeatable depolarization followed by hyperpolarization of PVN neurons. The KRGE-induced responses were concentration- dependent and persisted in the presence of tetrodotoxin, a voltage sensitive Na+ channel blocker. The KRGE-induced responses were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM), a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, but not by picrotoxin, a type A gamma-aminobutyric acid receptor antagonist. The results indicate that KRG activates non-NMDA glutamate receptors of PVN neurons in mice, suggesting that KRG may be a candidate for use in regulation of stress responses by controlling autonomic nervous system and hormone secretion.


Asunto(s)
Panax , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Núcleo Hipotalámico Paraventricular/citología , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
5.
Am J Chin Med ; 44(2): 389-400, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080947

RESUMEN

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation.


Asunto(s)
Flavonoides/farmacología , Neuronas/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Sustancia Gelatinosa/citología , Núcleo Caudal del Trigémino/citología , Envejecimiento , Animales , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Relación Dosis-Respuesta a Droga , Dolor Facial/tratamiento farmacológico , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Masculino , Ratones , Fármacos Neuroprotectores , Fitoterapia , Scutellaria baicalensis/química
6.
Am J Chin Med ; 41(5): 1043-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24117067

RESUMEN

The plant Withania somnifera (WS), also known as Ashwagandha, has been used widely in traditional medicine systems in India and Nepal (Ayurveda), and has been accepted to cure various ailments. In this study, the whole-cell patch clamp technique was performed to examine the mechanism of action of WS on the SG neurons of the Vc from mouse brainstem slices. In whole-cell patch clamp mode, methanol extract of Withania somnifera (mWS) induced short-lived and repeatable inward currents in all SG neurons tested (31.3 ± 8.51 pA, n = 7) using a high chloride pipette solution. The mWS-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na (+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, AP5, an NMDA receptor antagonist and strychnine, a glycine receptor antagonist. The mWS induced currents were blocked by picrotoxin, a GABAA receptor antagonist. These results show that mWS has an inhibitory effects on SG neurons of the Vc through GABAA receptor-mediated activation of chloride ion channels, indicating that mWS contains compounds with sedative effects on the central nervous system. These results also suggest that mWS may be a potential target for modulating orofacial pain processing.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Extractos Vegetales/antagonistas & inhibidores , Extractos Vegetales/farmacología , Sustancia Gelatinosa/citología , Núcleos del Trigémino/citología , Withania , Ácido gamma-Aminobutírico , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Células Cultivadas , Canales de Cloruro/metabolismo , Relación Dosis-Respuesta a Droga , Dolor Facial/tratamiento farmacológico , Dolor Facial/genética , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Ratones , Técnicas de Placa-Clamp/métodos , Fitoterapia , Picrotoxina/farmacología , Extractos Vegetales/uso terapéutico , Receptores de GABA-A/fisiología , Estricnina/farmacología , Tetrodotoxina/farmacología
7.
Am J Chin Med ; 41(3): 503-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711138

RESUMEN

In Ayurveda,Withania somnifera (WS) is used as a medicine to maintain mental and physical health as well as to enhance memory. In this study, the methanolic extract of WS(mWS) was tested for its electrical influence on hippocampal CA1 pyramidal neurons using a patch clamp technique. In current clamp mode under a high chloride pipette solution, mWS (400 ng/µl) induced remarkable membrane depolarization (9.75 ± 2.54 mV, n = 6) of CA1 neurons. The mWS-induced depolarization was dose-dependent, reproducible, and persistent in the presence of 0.5 µM tetrodotoxin (TTX, 10.17 ± 0.04 mV, n = 6). In voltage clamp mode (holding potential = -60 mV), mWS induced a dose-dependent non-desensitizing inward current that persisted in the presence of TTX (0.5 µM), suggesting that the response induced by mWS was purely a postsynaptic event. Interestingly, these inward currents were partially blocked by strychnine, a glycine receptor blocker. Further, mWS potentiated the NMDA response in hippocampal CA1 neurons at low concentrations. Overall, these results suggest that there are compounds in WS with possible glycine mimetic activities, which may be potential targets for inducing memory consolidation in hippocampal CA1 neurons.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , N-Metilaspartato/metabolismo , Extractos Vegetales/farmacología , Células Piramidales/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Withania , Animales , Relación Dosis-Respuesta a Droga , Femenino , Glicinérgicos/farmacología , Hipocampo/citología , Masculino , Memoria/efectos de los fármacos , Ratones , Receptores de Glicina/antagonistas & inhibidores , Estricnina/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina
8.
J Ginseng Res ; 35(2): 219-25, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23717064

RESUMEN

Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated Na channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid (GABA)A receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the GABAA receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.

9.
Brain Res ; 1112(1): 134-45, 2006 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-16930568

RESUMEN

We have previously demonstrated that application of the inflammatory irritant mustard oil (MO) to the rat molar tooth pulp induces central sensitization in nociceptive neurons within the contralateral ventroposterior medial (VPM) nucleus and posterior nuclear group (PO) of the thalamus as well as brainstem subnucleus caudalis (Vc) and subnucleus oralis (Vo). Since Vc and Vo are important relays of pulp afferent input to thalamus, the aim of this study was to test if local application of the synaptic blocker CoCl2 to Vc or Vo influences the pulp-induced thalamic central sensitization. The activity of 32 nociceptive-specific (NS) neurons within the rat VPM and immediately adjacent PO was recorded. Spontaneous activity, mechanoreceptive field (RF), mechanical activation threshold and evoked responses to graded mechanical stimuli were assessed before and after MO application to the pulp. MO application evoked immediate but short-lasting neuronal discharges in 21 of the 32 NS neurons tested, as well as central sensitization reflected in significant and long-lasting (> 60 min) RF expansion, decrease in activation threshold, and increase in graded pinch-evoked responses in all 32 NS neurons. CoCl2 applied to the ipsilateral Vc significantly attenuated these pulp-induced changes for 20 min or more. In contrast, CoCl2 applied to the ipsilateral Vo did not reverse this MO-induced central sensitization. Isotonic saline applied to Vc or Vo was also ineffective. These findings indicate that central sensitization induced in nociceptive neurons within VPM and PO by noxious stimulation of the tooth pulp is dependent upon the functional integrity of Vc but not Vo.


Asunto(s)
Pulpa Dental/inervación , Neuronas/fisiología , Dolor/fisiopatología , Tálamo/citología , Núcleo Caudal del Trigémino/fisiología , Animales , Conducta Animal , Mapeo Encefálico , Cobalto , Potenciales Evocados/fisiología , Conducta Exploratoria/fisiología , Masculino , Planta de la Mostaza/efectos adversos , Dolor/inducido químicamente , Dimensión del Dolor , Umbral del Dolor/fisiología , Estimulación Física/efectos adversos , Aceites de Plantas/efectos adversos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA